MOAB Tutorial

September 29, 2010

“*scientific Discovery through Advanced Computing

Outline

* |ITAPS Data Model

* iMesh Interface (w/ examples)

* MOAB vs. ITAPS

* Best Practices (for Performance)
* Parallel Data

Discovery through Advanced Computing 2

I I i "ﬁiﬂh AT
INTEROPERABLE TOOLS FOR ADVANCED PETASCALE SIMULAI

Introduction

« MOAB:

— A database for mesh (structured and unstructured) and
field data associated with mesh

— Tuned for memory efficiency first, speed a close second
— C++ in both implementation and interface

— Serial, parallel look very similar, parallel data constructs
embedded in MOAB/iMesh data model

* ITAPS iMesh:
— A common API, data model for accessing mesh, field data
— C, directly-callable from C, C++, Fortran
— Pytaps for accessing from Python
* Numpy arrays for fine-grained data, efficient

€5SciDAC

~ Scientific Discovery through Advanced Computing 3

INTEROPERABLE TOOLS FOR ADVANCED PETASCALE SIMULATIONS

ITAPS Data Model

* 4 fundamental “types”:

— Entity: fine-grained entities in interface (vertex, tri, hex)

* Supported types: vertex, edge, tri, quad, polygon, tet, prism,
pyramid, hex, septahedron, polyhedron

* Mostly unstructured, though some implementations (MOAB) can
represent structured & (soon) expose in ITAPS data model

* Flexible in representing intermediate-dimension entities (internal
edges/faces)

— Entity Set: arbitrary set of entities & other sets
« Parent/child relations, for embedded graphs between sets

— Interface: object on which interface functions are called and through
which other data are obtained

— Tag: named datum annotated to Entitys, Entity Sets, Interface
* |nstances accessed using opaque (type-less) “handles”

GIRAC

ientific Discovery through Advanced Computing 4

ITAPS Data Model Usage ITAPS

Mesh Partition

Vertex-based
Klystron mesh, SLAC/SNL VeCtOI"ﬁeld InSide/OutSide on
structured mesh

Geom model
facets, topology

/

Ice sheet

bed surfac ' |

OBB Ti
o Hierarchical

o OBB Tree

N\, level 2

level 3

INTEROPERABLE TOOLS FOR ADVANCED PETASCALE SIMULATIONS

ITAPS Interface Design

appl.f77 app2.190 app3.CC app4.c app4.py
iMesh (C) PYTAPS
implA.CC implB.c 1mp1C £77

=C-based interface, but designed to be callable directly from
Fortran and C++
- Good portability, performance
- Maintenance easier
- iGeom, iRel too

*Quick startup for new users

ientific Discovery through Advanced Computing 6

Simple Example:

INTEROPERABLE TOOLS FOR ADVANCED PETASCALE SIMULATIONS

HELLO iMesh (C++)

* Simple, typical application which 1) Instantiates iMesh interface, 2)
Reads mesh from disk, 3) Reports # entities of each dimension

#include <iostream> ®
#include "iMesh.h"

int main(int argc, char *argv([])
{
// create the Mesh instance
char *options = NULL;
iMesh Instance mesh;
int ierr, options len = 0;
iMesh newMesh (options, &mesh, &ierr,
options len);

Makefile:

include ../../i1Mesh-Defs.inc

HELLOiMesh: HELLOiMesh.o
$(CXX) $(CXXFLAGS) -o $@ HELLOiMesh.o \
${IMESH LIBS}

.cpp.o:
S{CXX} -c S{CXXFLAGS} $IMESH_INCLUDES} S$<

// load the mesh
iMesh load(mesh, argv[l], options, é&ierr,
strlen(argv[1l]), options len);

// report the number of elements of each dimension
for (int dim = iBase VERTEX; dim <= iBase REGION; dim++) {

int numd;
. iMesh getNumOfType (mesh, 0, dim, &numd,

&ierr) ;

std: :cout << "Number of " << dim << "d elements = "

<< numd << std::endl;

}

return true;}

E;Cijilfi(:

Scientific Discovery through Advanced Computing

Note: no error checking here for brevity,
but there should be in your code!!!

7

ITAPS API's: Argument Handling TTAPS
Conventions

* ITAPS API's are C-like and can be called directly from C, Fortran, C++

* Arguments pass by value (in) or reference (inout, out)
— Fortran: use %VAL extension

* Memory allocation for lists done in application or implementation

— If inout list comes in allocated, length must be long enough to store results of
call

— By definition, allocation/deallocation done using C malloc/free; application
required to free memory returned by implementation

— Fortran: Use “cray pointer” extension (equivalences to normal f77 array)

* Handle types typedef'd to size t (iBase EntityHandle,
iBase EntitySetHandle, iBase TagHandle, iMesh_Instance)

* Strings: char*, with length passed by value after all other args

* Enum's: values (iBase SUCCESS, elc.) available for comparison
operations, but passed as integer arguments

— Fortran: named parameters

3SciDAC

% Scientific Discovery through Advanced Computing 8

INTEROPERABLE TOOLS FOR Al

DVANCED PETASCALE SIMULATIONS

Argument Handling Conventions

| ssue C FORTRAN
Function IXxxx_prefix SameasC
Names
Interface Typedef'd to size t, as type iXxxx_Instance; #define'd as type Integer; handle instance is1
Handle instance handle is F argument to all functions | argument to all functions
Enumerated | All arguments integer-type instead of enum- Same, with enum values defined as FORTRAN
Variables | type; values from enumerated types parameters
Entity, Set, | Typedef'd as size t; typedef types #define'd as type Integer
Tag Handles | iBase_EntityHandle, iBase EntitySetHandle,
iBase TegHandle
Lists - In: X *list, int occupied size Same, with Cray pointers used to reference arrays (see
- Inout: X **list, int *allocated_size, int FindConnectF example
**ocoupied_size
- malloc/free-based memory
allocation/deallocation
String char* -ty pe, with string length(s) at end of char[]-type without extra length argument (this length

argument list

gets added implicitly by FORTRAN compiler)

SeilDAC

Scientific Discovery through Advanced Computing

ITAPS API

* Important enumerated types:
— EntityType (iBase_ VERTEX, EDGE, FACE, REGION)
— EntityTopology (iMesh_POINT, LINE, TRI, QUAD, ...)
— StorageOrder (iBase BLOCKED, INTERLEAVED)

— TagDataType (iBase INTEGER, DOUBLE,
ENTITY_HANDLE)

— ErrorType (iBase SUCCESS, iBase FAILURE, ...)

* Enumerated type & function names have iBase,
IMesh, iGeom, other names prepended

"Scientific Discovery through Advanced Computing 1 O

iIMesh APl Summary

* Basic (Mesh): load, save, getEntities,
getNumOfType/Topo, getAllVixCoordinates,
getAdjacencies

* Entity: init/get/reset/endEntlter (iterators),
getEntType/Topo, getEntAdj, getVixCoord

* Arr (Entity arrays): like Entity, but for arrays of
entities

* Modify: createVix/Ent, setVixCoord, deleteEnt

&) SciDAC
“**"scientific Discovery through Advanced Computing 1 1

INTEROPERABLE TOOLS FOR ADVANCED PETASCALE SIMULATIONS

Imesh APl Summary (cont.)

* From iBase:

— Tag: create/destroyTag,
getTagName/SizeBytes/SizeValues/Handle/Type

— EntTag: get/setData, get/setint/Dbl/EHData, getAllTags, rmvTag
— ArrTag: like EntTag, but for arrays of entities
— SetTag: like EntTag, but for entity sets

— EntSet: create/destroyEntSet, add/remove entity/entities/set,
iISEnt/EntSetContained

— SetRelation: add/rmvPrntChld, isChildOf, getNumChld/Prnt,
getChldn/Prnts

— SetBoolOps: subtract, intersect, unite

* iBase-inherited function names still start with 'iMesh_' to
avoid name collision with other iBase-inherited interfaces
(iGeom, iRel, etc.)

> Scientific Discovery through Advanced Computing 1 2

Slightly More Complicated Example:!l%

FindConnect (C)

#include <iostream>
#include "iMesh.h"

typedef void* EntityHandle;

int main(int argc, char *argv[])
{
// create the Mesh instance
iMesh Instance mesh;
int ierr;
iMesh newMesh ("", é&mesh, &ierr, 0);

// load the mesh
iMesh load(mesh, 0, "1l25hex.vtk", "",
&ierr, 10, 0);

// get all 3d elements
iMesh EntityHandle *ents;
. int ents alloc = 0, ents size;
iMesh getEntities (mesh, 0, iBase REGION,
iMesh ALL TOPOLOGIES,
&ents, é&ents alloc,
&ents size, &lerr);

int vert uses = 0;

SEDAC

Scientific Discovery through Advanced Computing

// 1iterate through them

for (int 1 = 0; 1 < ents size; 1i++) {
// get connectivity
iBase EntityHandle *verts; .
int verts alloc = 0, verts size;

iMesh getEntAdj (mesh, ents[i], iBase VERTEX,
&verts, &verts alloc, &verts size,
&ierr);
// sum number of vertex uses
vert uses += verts size;

free (verts);
) ©)

// now get adjacencies in one big block
iBase EntityHandle *allv;
int *offsets;
int allv alloc = 0, allv_size,
offsets alloc = 0, offsets size;
iMesh getEntArrAdj (mesh, ents, ents size,
iBase VERTEX,
&allv, &allv _alloc, &allv _size,
&offsets, &offsets alloc, &offsets size,
&lerr);

// compare results of two calling methods
if (allv _size != vert uses)
std::cout << "Sizes didn't agree" << std::endl;

else
std::cout << "Sizes did agree" << std::endl;

return true;

13

INTEROPERABLE TOOLS FOR ADVANCED PETASCALE SIMULATIONS

FindConnect (C) Notes

* Typical inout list usage
X *list, int list_alloc = 0, int list_size

Setting list_alloc to zero OR list = NULL indicates list is unallocated, so it will
be allocated inside iMesh_getEntities

Addresses of these parameters passed into iMesh_getEntities
* |nout list declared inside 'for' loop
* Memory de-allocated inside loop

) SciDAC

ientific Discovery through Advanced Computing 1 4

Slightly More Complicated Example: ITAPS

_FindConnect (Fortran)

program
#include "iMes

c declarations

findconnect
h f£f.h"

iMesh Instance mesh

integer*
pointer
integer*
‘ pointer
pointer
pointer
integer
integer
integer
integer

8 ents
(rpents, ents(0:%*))

8 rpverts, rpallverts, ipoffsets

(rpverts, verts(0:*))
(rpallverts, allverts(0:%))
(ipoffsets, ioffsets(0,*))
ierr, ents alloc, ents size
verts alloc, verts size
allverts alloc, allverts size
offsets alloc, offsets size

c create the Mesh instance
call iMesh newMesh ("MOAB", mesh, ierr)

¢ load the mesh
call iMesh load(%VAL (mesh), %VAL(O),
1 "125hex.vtk", "", ierr)

c get all 3d elements

ents all

oc =0

call iMesh getEntities (%VAL (mesh),

1 SVAL (0), %VAL(iBaseiREGION),
‘ 1 SVAL (iMeSh_ALL_TOPOLOGIES) ,

1 rpents, ents alloc, ents size,

1 ierr)

SEDAC

Scientific Discovery through Advanced Computing

ivert uses = 0

c iterate through them;

do 1 = 0, ents size-1
c get connectivity
verts alloc = 0 .

call IMesh_getEntAdj(%VAL(mesh),
1 %VAL(ents(i)), S%VAL(iBase VERTEX),
1 rpverts, verts alloc, verts size, lerr)
c sum number of vertex uses
vert uses = vert uses + verts size
call free(rpverts)

end do ‘

c now get adjacencies in one big block
allverts alloc = 0
offsets alloc = 0
call iMesh getEntArrAdj ($VAL (mesh),
$VAL (rpents), S%VAL(ents size),
$VAL (iBase VERTEX), rpallverts,
allverts alloc, allverts size, ipoffsets,
offsets alloc, offsets size, ierr)

N

c compare results of two calling methods
if (allverts size .ne. vert uses) then

write(*, ' ("Sizes didn''t agree!™)')
else

write (*,' ("Sizes did agree!")"')
endif
end

15

FindConnect (Fortran) Notes

* Cray pointer usage
“pointer” (rpverts, rpoffsets, etc.) declared as type integer
* Careful — integer*8 or integer*4, 64- or 32-bit
“‘pointee” (verts, ioffsets, etc.) implicitly typed or declared explicitly
pointer statement equivalences pointer to start of pointee array
pointee un-allocated until explicitly allocated

* Set allocated size (ents_alloc) to zero to force allocation in
IMesh_getEntities; arguments passed by reference by
default, use %VAL extension to pass by value; pointers
passed by reference by default, like arrays

* Allocated size set to zero to force re-allocation in every
iteration of do loop

* Use C-based free function to de-allocate memory

ESciDAC

> Scientific Discovery through Advanced Computing 1 6

FindConnect Makefile

INTEROPERABLE TOOLS FOR ADVANCED PETASCALE SIMULATIONS

include /sandbox/tautges/MOAB/lib/iMesh-Defs.inc

FC = ${iMesh FC}
CXX = g++
CC = gcc

CXXFLAGS = -g
CFLAGS = -g
FFLAGS = -g
FLFLAGS = -g

FindConnectC: FindConnectC.o
$(CC) $(CFLAGS) -o $@ FindConnectC.o ${IMESH LIBS}

FindConnectF: FindConnectF.o
$(FC) -o $Q@ FindConnectF.o ${IMESH LIBS}

.cpp.o:

${CXX} -c S{CXXFLAGS} S${IMESH INCLUDES} $<
.CC.O:

${CC} -c S${CFLAGS} S{IMESH INCLUDES} $<
FLooz:

${FC} -c S${FFLAGS} S${IMESH INCLUDES} $<

SEDAC

~ Scientific Discovery through Advanced Computing

17

INTEROPERABLE TOOLS FOR ADVANCED PETASCALE SIMULATIONS

ListSetsNTags Example

* Read in a mesh
 Get all sets

* For each set:
— Get tags on the set and names of those tags
— If tag is integer or double type, also get value
— Print tag names & values for each set

* Various uses for sets & tags, most interesting ones involve
both together
— Geometric topology
— Boundary conditions
— Processor decomposition

6 SciDAC

*Scientific Discovery through Advanced Computing 18

ITAPS

INTEROPERABLE TOOLS FOR ADVANCED PETASCALE SIMULATIONS

ListSetsNTags Example (C++

#include <iostream> for (i = 0; i < sets size; i++) {
#include <cstdlib> // get connectivity
#include scstring> iMesh getAllEntSetTags (mesh, sets[i], &tags, &tags alloc,
#include "iMesh.h stags size, &err);
#define ERRORR(a) {if (iBase SUCCESS != err) {std::cout << a << if (0 != tags size) {
std::endl; return err;}} std::cout << "Set " << sets[i] << "; Tags:" << std::endl;
int main(int argc, char *argv([]) // list tag names on this set
{ £ - : : ;
. or (j = 0; j < tags_size; j++) |
if (arge < 2) {) char tname[128];
std::cout << "Usage: " << argv[0] << " <filename>" << int int val, tname size = 128:
.. . _ ’ _ - ’
stdsiendls double dbl val;
} u ! iMesh getTagName (mesh, tags[j], tname, é&err, tname size);
tname [tname size] = '\0';
// Check command line arg . iig:ég;ugy;;tname;
h *fil = 11 \ — !
char trename argv(l] iMesh getTagType (mesh, tags[j], &tag type, &err);
. ERRORR ("Failed to get tag type.");
// create the Mesh instance .) . -
iMesh Instance mesh; , if (iBase INTEGER == tag_type) { .
int err; iMesh getEntSetIntData (mesh, se?s[l], tags([j]l,&int val, éerr);
iMesh newMesh (NULL, &mesh, &err, 0);) std::cout << (val = << int_val << M); ;
else if (iBase DOUBLE == tag type) {
iBase EntitySetHandle root set; iMeshigitEntsitSSlD?ta{mesh,<ze§g£i},Eagi[j], &dbl val, &err);
= std::cou "(val = " va)"

iMesh:getRootSet(mesh, &root set, &err);

ERRORR ("Couldn't get root set."); }
else std::cout << "; ";

// load the mesh }
iMesh load(mesh, root set, filename, NULL, &err, }
strlen (filename), O0); std::cout << std::endl;

ERRORR ("Couldn't load mesh.");
free(tags);

// get all sets tags = NULL;
iBase EntitySetHandle *sets = NULL; tags_alloc = 0;
int sets _alloc = 0, sets size; }
iMesh getEntSets (mesh, root set, 1, &sets, &sets alloc,
&sets _size, &err); free (sets);
iMesh dtor (mesh, &err);
// iterate through them, checking whether they have tags return 0;
iBase TagHandle *tags = NULL; }
int tags alloc = 0, tags size;

int i, 37

Scientific Discovery through Advanced Computing 1 9

INTEROPERABLE TOOLS FOR ADVANCED PETASCALE SIMULATIONS

ListSetsNTags Example Notes

* Enumerated variables declared in SIDL-based code
as Iface::enumNAME, e.qg. iBase::EntityType or
IBase:.TagType

* Enumerated variable values appear as
Iface::enumNAME_enumVALUE, e.g.
IMesh::EntityTopology TETRAHEDRON or
iIBase::TagType INTEGER

e () 4 -
> SclDAC
%" Scientific Discovery through Advanced Computing 2 O

Perf kernel example

Get element vertex locations, average

MOAB

void query elem to vert ()
{
Range all hexes;
ErrorCode result = gMB-
>get entities by type (0, MBHEX,
all hexes);
const EntityHandle *connect;
int num connect;
double dum coords([24];
for (Range::iterator eit =
all hexes.begin(); eit !=
all hexes.end(); eit++) {
result = gMB-

>get connectivity(*eit, connect,
num connect) ;
assert (MB SUCCESS == result);
result = gMB->get coords (connect,
num connect, dum coords);
assert (MB SUCCESS == result);
// compute the centroid
double centroid[3] = {0.0, 0.0,
0.0},

for (int j = 0; j < 24;) {

centroid([0] += dum coords[j++];
centroid[1l] += dum coords[j++];
centrOLd[Z += d%? coords[j++];

Discovery thro vanced Co

iMesh

volid query elem to vert (iMesh Instance
mesh)
{
iBase EntityHandle *all hexes = NULL;
int all hexes size, all hexes _allocated

// get all the hex elements
int success;
iBase EntitySetHandle root set;
iMesh getRootSet (mesh, &root set,
&success) ;
iMesh getEntities (mesh, root set,
iBase_REGION, iMeSh_HEXAHEDRON,
&all hexes, &all hexes allocated,
&all hexes size, &success);
// now loop over elements
iBase EntityHandle *dum connect = NULL;
int dum connect allocated = 0,
dum connect size;
double *dum coords = NULL;
int dum coords size,
dum coords allocated = 0;
int order;
iMesh getDfltStorage (mesh,
&success) ;

&order,

for (int 1 = 0; 1 < all_hé%ds_size; i++)

INTEROPERABLE TOOLS FOR ADVANCED PETASCALE SIMULATIONS

INTEROPERABLE TOOLS FOR Al

DVANCED PETASCALE SIMULATIONS

Performance

* Large applications balance memory and cpu time performance

* Implementations of iMesh vary on speed vs. memory performance
— Create, v-E, E-v query, square all-hex mesh
— Test entity- vs. array-based access

* Compare MOAB Native/structured/iMesh, Reflmpl iMesh

Total execution time

: Max memo
25 ; Memory after mesh construction ry

/ 2.00E+6 7
e / 1.80E+6 g

/ /

/ / e
1.20E+6 LRIE o —
1.00E+6 1.40E+6 - MOAB indiv

= = § 1.20E+6/ & MOAB lb|OC|(eC.i .
B = 8.00E+5 = T A MOAB iMesh indiv
= g £ » MOAB iMesh
E 6.00E+5 5 8.00E+5 blocked
E = < Reflmpl indiv
4.00E+5 6.00E+57— 44 Refimpl blocked
4.00E+51 P
2.00E+5/ N =
O] 2.00E+5{/—¢
i e
0.0E+00 2.0E+06 4.0E+06 6.0E+06 8.0E+ 0.00E+0 e 0.00E+0
elements 0.0E+00 ~ 2.0E+06 4.0E+06 6.0E+06 8.0E+0f 0.0E+00 2.0E+06 4.0E+06 6.0E+06 B8.0E+06

elements # elements

: S CiD .A.C

Scientific Discovery through Advanced Computing 2 2

INTEROPERABLE TOOLS FOR ADVANCED PETASCALE SIMULATIONS

IMesh Review

* Data model consists of 4 basic types: Interface, Entity, Entity
Set, Tag

* Applications reference instances of these using opaque
handles

* ITAPS interfaces use C-based APls, for efficiency and
iInteroperability

* Not covered here:

— lterators (intermediate-level, “chunked” access to mesh)

— Modify (relatively coarse-grained, basically create and delete whole
entities)

— Set parent-child links

$ScilDAC

Sclentiﬂc Discovery through Advanced Computing 2 3

MOAB

 MOARB entity types include entity set & are sorted by
dimension (defined in EntityType.h)

— MBVERTEX, MBEDGE, MBTRI, MBQUAD, MBPOLYGON, MBTET, ...,
MBENTITYSET

* EntityHandle properties
— MOAB entity handle is an integer type, embeds entity type, entity id
— List of contiguous handles can be stored in ranges, const-space lists
— Sort by type, dimension
— Set booleans (intersect, union, subtract) very fast on ranges
— Config option to use 64-bit handles on 32-bit apps if id space is a concern

* Range class: series of sub-ranges of entity handles

* MOAB functionality accessed through Interface, an abstract
base class

— Most functionality similar to what's in iMesh, plus a little more

*Scientific Discovery through Advanced Computing 24

INTEROPERABLE TOOLS FOR ADVANCED PETASCALE SIMULATIONS

MOAB Tools

* Some functions support set booleans implicitly:

virtual MBErrorCode get adjacencies (const MBRange &from entities,

const int to dimension, const bool create if missing,
MBRange &adj entities,
const int operation type = MBInterface::INTERSECT);

— For multiple from_entities, adj_entities will be intersection of queries on each
from_entity

* To get common vertices between two entities, call with to_dimension=0
and MBiInterface:.INTERSECT

* To get all vertices used by group of entities, call with to_dimension=0
and MBiInterface::UNION

* MBSkinner: gets skin (bounding (d-1)-dimensional entities) of a set of entities

* |O: format designated by file extension;

— CUBIT .cub (R), Exodus (.g, .exoll) (RW), vtk (.vtk) (RW), native HDF5
format (.h5m, .mhdf) (RW)

— Use .hdm/.mhdf to save everything MOAB can represent in data model (sets,
tags, set parents/children, polygons/polyhedra, etc.)

) SciDAC

ientific Discovery through Advanced Computing 2 5

MOAB Parallel

Configure with --with-mpi= option

Parallel read (bcast_delete, read_delete) working
— Can use any “covering” set of sets as partition

— Read method designated with options to MOAB's load _file function, e.g.
“PARALLEL=BCAST DELETE;PARALLEL PARTITION=MATERIAL_SET”
“PARALLEL=BCAST_ DELETE;PARALLEL_PARTITION=GEOM_DIMENSI
ON;PARTITION_VAL=3;PARTITION_DISTRIBUTE”

Other classes

— ParallelComm: pass entities/tags/sets between processors, define
communicator

— ParallelData: convenience functions for getting partition, interface entities

Relevant tags (defined in MBParallelConventions.h):
* PARALLEL _SHARED PROC: 2 ints, ranks of sharing procs on 2-proc interface
* PARALLEL _SHARED PROCS: N ints, ranks of sharing procs when > 2 procs share iface
* PARALLEL_OWNER: rank of owning processor for interface entities, sets

* PARALLEL_GHOST: rank of owning processor for ghost entities, sets

. Al PARALLEL:GID: global id, used to match vertices, other entities
“”Scientific Discovery through Advanced Computing 2 6

MOAB Parallel Example

(condensed from mbparallelcomm_test.cpp in MOAB source dir)

int main(int argc, char **argv)
{
int err = MPI Init(&argc, &argv);
int nprocs, rank;
err = MPI Comm size (MPI COMM WORLD, &nprocs);
err = MPI Comm rank (MPI COMM WORLD, &rank);

// create MOAB instance based on that
MBInterface *mbImpl = new MBCore (rank, nprocs);
MBParallelComm *pcomm = new MBParallelComm (mbImpl) ;

// read a file in parallel
const char *options =
“PARALLEL=BCAST DELETE; PARTITION=GEOM DIMENSION; PARTITION VAL=3;PARTITION DI
STRIBUTE”;
MBEntityHandle file set;
MBErrorCode result = mbImpl->locad file(filename, file set, options);

// resolve shared vertices
result = pcomm->resolve shared ents();

// get shared vertices on this proc
MBRange shared ents;
result = pcomm->get shared entities (0, shared ents);

MPI Finalize();
return 0O;

Skﬁl]l%L:

Scientific Discovery through Advanced Computing :27

ITAPS Interfaces
Best Practices

* Pre-allocate memory in application or re-use memory
allocated by implementation

— E.g. getting vertices adjacent to element — can use static
array, or application-native storage

* Take advantage of implementation-provided
capabilities to avoid re-inventing

— Partitioning, 10, parallel communication, (parallel) file readers

* Be careful about integer*8, integer*4, memory
corruption in Fortran apps (valgrind is your friend)
* Implement iMesh on top of your data structure
— Take advantage of tools which work on iMesh API

* Let us help you

— Not all the tricks can be easily described and may not be self-
evident

O SciDAC

> Scientific Discovery through Advanced Computing 2 8

INTEROPERABLE TOOLS FOR ADVANCED PETASCALE SIMULATIONS

Best Practices: MOAB vs. ITAPS

* When handling & manipulating large lists of entity handles,
using MBRange can save lots of memory
— But small or fragmented ranges can cost in terms of time

* Lower overhead with MOAB native interface
— Actual amount depends on granularity of access

* No MOAB Fortran or C interface, only C++

6 SciDAC

*Scientific Discovery through Advanced Computing 29

MOAB Code Detalils

 Build/configure: autotools (including libtool)
— Contributed support for cmake

« Compilers: GNU (including gfortran), IBM XL, Intel, others
 Platform: Linux, AIX, Mac OS X

— Windows: maybe eventually, but no strong (paying customer) pull
— Parallel: IBM BG/P, clusters (Jaguar probably not difficult)

» Open source (LGPL) throughout

« Subversion, world-readable repository

« Language:
— C++ throughout (iMesh APl is C)
— Namespace-protected by default, but non-namespace for legacy apps

« |/O
— Native: HDF5-based
— Vik, Exodusll, partial Netcdf nc, others

. 32, 64 bit both supported

Scientific Discovery through Advanced Computing 3 O

INTEROPERABLE TOOLS FOR ADVANCED PETASCALE SIMULATIONS

Recent improvements/plans

* Started nc data reader (just vertices for now, but whole
mesh, fields very soon)

* Direct access to tag data storage

— For static-mesh applications, eliminates cost of going through API, could
be significant savings for fine-grained access

* Solution transfer between meshes
— Current interpolation-based capability inside MOAB proper

* Parallel-aware already
* 3D only, tet, hex FE shape functions

— Will develop more fully using Intrepid as part of this project
— Basis for solution coupler development under CSSEF, so more to come

* Time-dependent data
— Currently, have to “fake it” with different tag for each time step
— Will develop native support for time-dependent tags

*’Scientific Discovery through Advanced Computing 3 1

Obtaining the ITAPS Software

ITAPS

INTEROPERABLE TOOLS FOR ADVANCED PETASCALE SIMULATIONS

ITAPS Software Web Pages

http://www.1taps.org/software/

Eile Edit View Go Bookmarks Tools Window Help

© ZhHome | WhBookmarks #2Red Hat Network (4Support [4Shop [4Products 4 Training

S t a rt e d E Getting Started with ITAPS Software

ITAPS Research

SciDAC Applications I e g su : : Lo
SciDAC CETs conceptually, into three distinet categories; integrated-Services, component-Services and interfaces.

I

ITAPS software is a continually growing suite of interoperable software products divided,

Interfaces for mesh, geometry, fields and the relationships among them are the fundamental

|] ouaAL Lels
. Publications - ! ! : . o
ITAPS Software infrastructure necessary to create interoperable scientific computing software products. These interfaces
 Getting Stared are on of the key enabling technologics the ITAPS Center is responsible for developing and
Usage Strategies maintaining
Data Model
ITAPS Interfa

L] L}
. Services Softw geometry tools to create services as well as integrating these products to create high-level
a a I I I O e e S C I I I O I l The ITAPS Team integrated-services. We note that many of the tools in the ITAPS software suite exist in two forms; an
Contact Us ITAPS-compliant version and its Conventional counterpart which may or may not include the

necessary wrappers to work with ITAPS interfaces. We provide links only to the ITAPS-compliant

In addition, the ITAPS Center is using the interfaces to componentize existing and new mesh and

versions of the software on these web pages; in most cases, the conventional versions are available for
download from their home institutions or you may contact the ITAPS POC for more information.

L]
. A ‘ ‘ e S S | O I I l | e I I a ‘ e Lastly, and most importantly, for a targeted set of applications, the ITAPS Center provides direct,
hands-on, customer support to end-user application developers who want to integrate ITAPS software
in about this support]. The ITAPS software suite is

products with their applications [contact Lori Di
the result of a collaboration of the interface design and integration expertise of the ITAPS Center with

|] |] |]
S p e C Ifl C a tl O n S component developers in the broader scientific computing community

When getting ready to use ITAPS software for the first time, the first thing to consider what tools you
are interested in using and how you are hoping to wark with them. Typically, application software

developers are interested in ITAPS software because they would like to incorporate functionality

]
provided by integrated or component level services into their own application codes. More information
on usage strategies for application scientists can be found here. In contrast, developers of pre- or
’ post-processing tools who want to make their tools available to a wide community of users are

interested in ITAPS Interfaces. The list below briefly describes each of the three categories of ITAPS
software and provides links to pages that describe software in that category in more defail as well as

Implementations

Category Brief Description

* Access to compatible U
services software

INTEROPERABLE TOOLS FOR ADVANCED PETASCALE SIMULATIONS

Interface Software Access

* Links to the interface user
guides and man pages where
available

* Links to the interface docs
and headers

* Links to implementations for
IMesh, iGeom, iRel
— Links to the home pages for
more information
* Simple examples, compliance
testing tools and build
skeletons coming soon

SciDAC

Scientific Discovery through Advanced Computing

7 File Edit View Go Bookmarks Tools Window Help

<

e ¥ e 7 o 1% . i htp: . itaps-scidac.orgfsoftware/download_interfaces. html
onward Stoj

7 Z4Home | ‘fBookmarks £ Red Hat Network (4Support §Shop (%Products (4 Training

TAPS

Introduction
ITAPS Research
SciDAC Applications
SciDAC CETs
Publications

ITAPS Software

ITAPS Interfaces

Interface Specifications

The next step to creating interaperable technologies is to define common interfaces that support the

: abstract data model. A key aspect of our approach is that we do not enforce any particular data
Geting Started structure or implementation with our interfaces, requiring only that certain questions about the
Usage Strategics geometry, mesh, or field data can be answered through calls to the interface. One of the most
Data Model challenging aspects of this effort remains balancing performance of the interface with the flexibility ||
LTAPS Interfaces needed to support a wide variety of data types. Performance is critical for kernel computations
Services Software involving mesh and geometry access, and to address this need, we provide a number of different

The ITAPS Team access patterns including individual iterator-based and agglomerated array-based requests. Further

Contact Us challenges arise when considering the support of many different scientific programming languages

which we address using a two-pronged approach. First, we provde a C-language binding for our

interfaces that is compatible with most needs in scientific computing. Additional flexibility, albeit at a

somewhat higher cost, is supported through the use of the SIDL/Babel technology provided by the

Common Component Architecture Forum (CCA).

There are five ITAPS interfaces, four that correspond to the core data model components, Geometry
(iGeom), Mesh (iMesh), Fields (iField), and Data Relation Managers (iRel) and one that contains the
utilities and definitions used by more than one of the core interface (iBase). These interfaces are
developed primarily by the ITAPS research team, but the discussion is open (for more information,
contact Lori Diachin). In the table below, each of the interfaces is briefly described and links to the
interface specification and user guides are given.

Interface Specifications

Interface Description Document:
Utilities and definitions used in multiple ITAPS core interfaces such as User Guide
- entity type and topology defintions, creation status, tag value types, eror | Man Pages
i Also contains basic sets and tags functionality definitions. C Specification v(
SIDL Specificatia
Basic mesh services to manage a discrete mesh composed of sefs of User Guide
entities, such as nodes, edges, faces and volumes, i fons to these | Man Pages
iMesh . . 3 3
entities and fags and fag data associated sets of entities. C Specification v(
SIDL Specificati <
] E‘
Yy 2 B & ={=| |

34

ITAPS

INTEROPERABLE TOOLS FOR ADVANCED PETASCALE SIMULATIONS

Services Software Access

* Links to the services built on

L] Eile Edit View Go Bookmarks Tools Window Help
the ITAPS interfaces ey
£ 4} Home | ‘b Bookmarks 4 Red Hat Network (4Support (4Shop [4Products (4 Training
Kad
* Currently or very soon to be
y y ITAPS Component Services Software
Introduction
" ITAPS Research
a Va I I a b I e SeiDAC Applications ITAPS researchers are working to develop a number of component services that are of direct use to
application scientists that access the necessary mesh and geometry informaiton through the [ITAPS
W s. To use these services, you must implement at least a subset of the common interfaces
ITAPS Software defined by the ITAPS team to provide access (o your mesh, and if necessary, geometry data. In many
. Geting Started cases, only a partial implementation of the interface is required and this is described on a
— M e S q u Ite Usase Stratesics service-by-service basis. Furthermore, you may quickly try these services to determine if they are
ata Model suitable for your long term use by taking advantage of one of the IITAPS reference implementations.
S e This will likely require a data copy, which can give less than ideal performance, but will allow rapid
Services Software prototyping experiments. In addition to providing access to your mesh and geometry data through the
— ZO I ta n The ITAPS Team ITAPS interfaces, you will also need to call the service-specific APIs to invoke the funetionality
o e provided by each service. See the usage strategies page for a schematic and fuller description.
= ITAPS currently provides a number of services based primarily an the iMesh interface specification
. As SciDAC-2 continues, we expect to add more services both at the component level and at the
— Swa p p I n g integrated services level. ||
Available ITAPS Component Services
[Name POC Description |[Interface More
— F ro n tl e r Requirements | Info/Download
Mesquite |Patrick Knupp, (Mesh quality ||Partial iMesh |[More
SNL improvment |[|to obtain Information
- via node vertex Download
_ VI S It PI u I n repositioning, ||coordinates, [[(+0.7)
many mesh (|adjacency,
types and tags, iGeom
. improvement |for surface
[L k t h f goals, 2D/3D [smoothing
INKS 10 home pages 10r more e
Ollivier-Gooch, |improvment ||to obtain
u " UBC for simplicial |[vertex Download
meshes via |coordinates, |[(v0.7)
I I edge and face |adjacency, tags
swapping,
2D/3D
]]] : 0 I
Py Frontier |Xiaolin Li, Front tracking ||iMesh c &l
NSTructons 10r bulia ana IliNKSs v i

to supporting software
SciDAC

Scientific Discovery through Advanced Computing 3 5

INTEROPERABLE TOOLS FOR ADVANCED PETASCALE SIMULATIONS

MOAB Software Web Pages

http://trac.mcs.anl.gov/projects/ITAPS/wiki/MOAB

* General information
* Browse svn repo
* FAQ

* Pointers to mailing list
archives

©SciDAC

'Scientific Discovery through Advanced Computing 3 6

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

